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The electronic density of states in liquids: computer 
simulation versus integral-equation approach 

Christoph F Stmadl and Gorhard Kahl 
lnstitut fiJr Theoretische Physk, Technische UnivenitZt Wien. Wledner Hauptshase 8-10,040 
Wien. Austria 

Received 10 May 1993 

Abstract A recently developed method due to Winn and Logan (and in a similar formulation 
by Xu and Stratt) allows the determination of the electronic density of states (Dos) of disordered 
systems by solving a generalized, complex-valued Omstein-Zede-type equation. The only 
input required is the pair distribution function (characterizing the sm~cture of the disordered 
system) and the transfer mauix element A closure relation, necessary for the solution has been 
proposed by the authors: it is derived-awuming some approximations-from an originally 
exact relation. Up to now this method has only ken applied to model systems, where an exact 
analytical solution of the equations was possible, For this study we have solved the integral 
equation along with the closure relation numerically. For the pair interaction of the particles 
we have considered both hard-core and continuous potentiak various "fer-matrix elemenu 
have been used. The results for the ws have been compared 10 moleculardynamics results, 
where the electronic ws has k e n  determined by direct diagonaliration of the tight-binding 
Hamiltonian: we find the agreement between the numerical results and the simulation data to be 
good. Differences may be attributed to the approximations made in the derivation of the closure 
relation 

1. Introduction 

If we are faced with the problem of determining the e lemnic  density of states (DOS) 
of a disordered system (in particular of a liquid), the main problem we have to cope 
with is to take into account the full structure of the disordered system. expressed, e.g. in 
terms of the complete set of multi-particle correlation functions. For the solution of this 
problem, two major approaches have been developed and utilized during recent years (if 
we restrict ourselves to a simple tight-binding (TB) model): one is based on simulation 
methods, where the liquid i s  simulated by a small ensemble of typically several hundreds 
or a few thousands of particles; the Dos is calculated by diagonalizing the Hamilton matrix. 
The other possibility is the determination of the configurationally averaged Green function; 
although several methods have been proposed for this approach in the past years, it was only 
a few years ago that a successful concept opened a wider aspect for treating this problem. 
This approach was proposed by Winn and Logan (WL) [ I  ,2]; a similar formalism has been 
developed by Xu and Stratt [3]. 

Winn and Logan considered the following problem: assuming a simple single-band TB 
Hamiltonian (including both site-diagonal and off-diagonal disorder) how can the ensemble- 
averaged diagonal and off-diagonal Green hc t ions  be determined, taking into account the 
full structure of the liquid in terms of the complete set of s-particle distribution functions 
g s ( q ,  . . . , rs). Using parallels to the determination of the dielectric constant of non-polar 
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fluids based on the classical Yvon-Kirkwood equations-a problem which was solved by 
Wertheim some time ago [4]-they arrived at a complex-valued integral equation; this 
equation has formally the same structure as the Omstein-Zemike (02) equation [51 for 
the determination of the pair-structure of classical liquids. As in the liquid-state case, an 
additional relation between the unknown functions (a so-called closure relation) is required 
for its solution: at this point WL are obliged to take recourse to approximations arriving at 
relations which allow the realization of a numerical solution of the problem. One of their 
approximations consists in the restriction to a single-site description in which all s-particle 
correlation functions are approximated by the Kirkwood superposition approximation [6] 
for s 2 3. WL finally arrive at an expression which they call the single super-chain 
approximation (SSCA), which was also originally suggested by Wertheim for his problem 
and turned out to be equivalent to the effective medium approximation ( E m )  proposed by 
Roth [7]. Furthermore. WL have succeeded in solving this 02-type equation along with the 
SSCA/EMA closure for a simple model system (a step function characterizing the shucture of 
the hard-core system and a Yukawa transfer matrix element) analytically; this was realized 
by recourse to the analytic solution of the mean spherical approximation (MSA) €or a hard- 
sphere Yukawa system of classical liquid-state theory solved by Waisman and co-workers 
[SI. They derived a further closure-relation, taking into account at least partly multi-hopping 
processes (a fact which was completely neglected in the SS-MA). and the generalization 
of their approach to the two-bandmodel [9]. Both one- and two-band models were compared 
with computer simulation results (which, however, could not be reproduced in our study 
and hence leave same questions open [IO]). Stratt and co-workers [11,12] were able to 
propose an equivalent formulation of the method proposed by WL. 

The formalism of the WL approach brings a further advantage: introducing 
approximations either at the level of the 02-type equation itself or at the level of the closure 
relations allows a classification of methods proposed so far I7.13-161 for the determination 
of the electronic DOS of disordered systems (as shown in [I]); this makes a more systematic 
overview possible. 

In an effort to apply this powerful method to more complex systems than simple 
model liquids, a numerical procedure has been implemented which enables us to solve this 
complex-valued integral equation numerically (along with the SSCA/EMA closure relation 
proposed by WL) and to determine in the following the DOS. This implementation is based 
on a powerful numerical algorithm, originally devised for the solution of the oz equation 
of classical liquid-state theory [17], It now allows us to determine the electronic DOS for 
any liquid system, characterized by a pair smcture (via the pair distribution function (PDF) 
g(r)) and an arbitrary transfer matrix element (TME) V(r).  A previous study [18] on the 
influence of these two functions on the DOS for the case of hard-core liquids represents the 
first numerical application of this numerical method. 

The aim of this contribution is the following. (i) since the numerical implementation 
of the WL method may now be applied to any system, we can choose the necessary input 
quantities (i.e. g ( r ) ,  V ( r )  and the density p )  deliberately and study their influence on 
the DOS, in particular on its shape and the position of the upper band edge (UBE) (as 
already partially done in a preliminary communication [181). For the interatomic forces of 
the atoms we have used both hard-core (hard spheres-HS) and soft potentials, restricting 
ourselves in the latter case to simple Lennard-Jones (U) systems. The g(r) values have 
been calculated by means of thermodynamically self-consistent liquid-state theories [ 191 
and computer simulations. Conceming the TMEs, we have used several functional forms, 
among them the Yukawa TME used by WL: variation of the TMES enables us to check the 
reliability of the numerical procedure (when reproducing the analytical results by WL). The 
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influence of a realistic g ( r )  instead of a step function as used by W, is also investigated. 
(ii) In order to check the reliability of the numerical results we have determined the DOS 
in computer simulations. The motion of the particles has been calculated by means of a 
standard molecular-dynamics (MD) simulation; different codes for the hard-core [201 and the 
soft [213 potentials were used. The DOS itself was obtained by diagonalizing the Hamiltonian 
using eight k points and averaging over 75-100 independent configurations of the liquid 
system. 

Finally, special attention has been paid to the moments ( E " )  = JdE  D(E)E",  D (E)  
being the DOS per particle per energy; these contain useful information about the reliability 
of the method. The moments were calculated up to second order (n = 2) since for these 
quantities exact relations exist in terms of the PDF and the TME only. 

Our results may be summarized as follows: conceming the influence of the PDF, 
the most crucial quantity is the contact value (main peak height) in the hard-core (soft- 
potential) system. Especially in the hard-core case we find that the use of a realistic 
PDF (as obtained either from the simulation or a suitable Percus-Yevick (PY) [22-241 Or 
Verlet-Weis [25] parametrization) is absolutely necessary. A model PDF (step function) iS 
not able to reproduce the UBE as compared to 'exact' simulation results: only on using 
the 'correct' PDF is the UBE shifted into the right position. These results suggest that- 
physically speaking-the electronic states in the vicinity of the UBE are mainly determined 
by nearest-neighbour interactions, which strongly confirms the reports of Bush et al and 
Gibbons et al [10,26], who put forward the same argument in the context of very low- 
density-systems. Although agreement between computer simulation and numerical results 
is found to be in general satisfactory, differences may still be observed: however, there is 
evidence that this closure relation is not suitable in the low density regime where multi- 
hopping processes are neglected preliminary results with an improved closure relation that 
takes these effects-at least partly- into account show that this expression gives better 
results. In the high density region we find that the quality of the agreement depends on the 
TME (both functional form and range); this situation is analogous to the liquid-state case: 
there different closure relations (as, e.g., the hypemetted chain or PY approximations [5]) 
yield results for the liquid shucture of different quality depending on the potential used (the 
interaction potential in liquid state theory corresponds to the TME in the calculation of the 
DOS). This points out that differences in the DOS are due to those terms neglected in the 
derivation of the closure relation. 

The paper is organized as follows: in the next section we present a brief overview of 
the WL method and its numerical implementation as well as the simulation technique; we 
describe the systems treated in this study, characterized by their PDFs and TMEs. Section 3 
contains a discussion of the results and the paper is closed by concluding remarks. An 
appendix contains implementation details about the integral-equation approach. 

2. Theory 

2.1. Integral-equation approach 

In our study we have followed the formulation of the problem due to WL [1,2]: for a given 
configuration of the homogeneous liquid of N particles positioned at T I ,  the TB Hamiltonian 
is given by 
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where c: (ci) is the creation (annihilation) operator for the one-electron state for site i .  
Vjj = V(rj - rj) is the TME which enables the excitation to transfer from site i to site 
j .  Although the problem can easily be formulated for the case of site-diagonal disorder 
(where the ci are considered as independent random variables with a probability distribution 
P ( E ~ ) )  we restrict ourselves in this contribution to the case of pure off-diagonal disorder, 
i.e. P ( s i )  = 6 ( ~ i  - E O ) ;  furthermore, we assume-without loss of generality--Eo to be zero. 
Hence the Hamiltonian in (I) reduces to 

C F Strnadl and G Kahl 

We are interested in the (ensemble-averaged) DOS D ( E ) ,  which may be obtained as follows: 
let Gij(z) be the Green function for a given configuration of the particles, i.e. 

Gjj(2) = (OlCi(2 - H)-lc;lO) (3) 

where 10) is the vacuum state. We now define the.ensemble-averaged diagonal (off-diagonal) 
Green function cji(z) ((?(?-I - T Z ) )  

where (...) denotes the configurational averaging over a system of N particles which 
interact via an interaction potential O,.,(T~,...+N); p is the number density. Once we have 
determined Gj~(z), the Dos (per individual particle per energy) may easily be calculated 
from 

G ( E r t i q ) = X ( E ) i i r r D ( & j  D ( E ) = - -  lun Ime(E+i t ) )  

where q is a positive infinitesimal. 
Using parallels to the determination of the dielectric constant of non-polar fluids based on 

the classical Yvon-Kirkwood equations solved by Wertheim [41, WL succeeded in presenting 
a closed set of exacf equations to determine (?(z). They arrive at the following coupled 
integral equations: 

~- 

(6) 
~1 . 
x “43 

~~ 

zG(z) = 1 i p [ G ( z ) 1 2 ~ ~  d3r2 H ( T ~  - rZ)v(rz - pl) (7) 

(8 )  

C ( ~ I  -TZ) (as well as G(r1 - TZ) )  may be defined in terms of composite graphs consisting 
of Vjj bonds with additional connectors arising from the s-particle distribution functions 
gJnq ..:, rs), which characterize the liquid structure. Once equations (7) and (8) are 
solved, G ( r l  - r2) may be determined from 

-1 
H h  - rz) = C(rl  - rz) + p i ; @ )  d3r3 H ( r l  - ~3)C(r3  - 5). J 

G ( P 1  -rz) = G ( Z ) H ( T ,  - rz)G(z). (9) 
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Equation (8) has a similar smcture to the oz equation [SI of classical liquid-state theory 

h d r ~  - ~ 2 )  = C ~ T I  - T Z )  + p h2(r1  - TJ)C2(r3  - T Z )  d3r3 (10) s 
where h 2 ( r )  = g*(r) -  1 and c ( r )  are the total and direct correlation functions of the liquid, 
respectively. As in the liquid case, we have to provide a so-called closure relation, which 
represents a further relation between these functions and the interatomic pair potential and 
thus enables the solution of the integral equations. 

The WL formulation has furthermore the appealing feature that approaches proposed 
during recent years for the determination of the Dos may be classified according to 
approximations introduced at the level of the oz-type equation andlor the closure relation 
[7,13-161. 

In our study we have used as the closure relation the SSCA: starting from the exact 
expression for C ( r ,  - r2) WL confine themselves to a single-site description, which 
is rigorously defined by the following two criteria: (i) all s-body correlation functions 
g s ( q , .  . . , T ~ )  are approximated by the Kirkwood superposition approximation [6], and (ii) 
only single-site graphs are retained in C(r1 - r2) [ 1,2]. In the remaining expression all 
graphs with crossing intemal h d r )  bonds are neglected, and finally the authors arrive at 
the following closure relation: 

~z(T)C(T) = sz(r)V(r) + h z ( r ) H ( r ) .  (11) 

This approximation was originally suggested by Wertheim in the dielectric context. 
Furthermore, the SSCA closure relation, along with the oz-type equations (7), (8) tums 
out to be formally equivalent to the EMA proposed by Roth [7]. WL succeeded in mapping 
the solution of (7) and (8) along with the SSCA closure ( I  1) for a model system (Yukawa 
“ME and step-function PDF) to a standard problem of liquid-state theory: the solution of the 
MSA for an HS Yukawa system, a problem that may be solved analytically, as demonstrated 
by Waisman and co-workers [SI. Hence WL are able to give an analytic expression for the 
DOS for this simple model system. 

An obvious generalization along the lines already outlined by Elyutin [I31 and Wm 
and Logan [1,21 would be the inclusion of multi-hopping graphs in the first term of the 
right-hand side of ( I  I )  

gz(r)C(r) = g Z ( T ) V ( r ) / [  1 - [d(z)v(r)lzj + M T W ( ~ ) .  (12) 

Although taking into account only the multi-hopping processes between a pair of sites this 
closure would have the additional pleasing property of reducing to the correct low-density 
limit p + 0. 

For this study the oz-type equation was solved along with the closure relation (11) 
numerically. The program is a generalization of a powerful implementation [27] of Gillan’s 
[I71 algorithm to solve the oz-equation of classical liquid state theory. Details of the 
program and numerical parameters are compiled in the appendix. 

A further quantity we are interested in is the moments ( E ” ) ,  defined as 
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where the following exact moment conditions hold [ I l l  
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(EO) = 1 ( E )  =o. 

For orthogonal atomic orbitals one finds 

( E 2 )  = p /  d3rg(r)V2(r). 

WL [28] assume-but have not proven rigorously-that any DOS calculated by a theory 
based on the Oz-type equation automatically fulfills the normalization condition (Eo)  = 1. 

2.2. Simulation 

The simulations were realized with a standard microcanonical molecular-dynamics (MD) 
code, with the usual periodic boundary conditions and minimum-image convention applied. 
We used two different codes, optimized for the respective system (HS [201 and W [?.I]). The 
sample size ranges from N = 343 to 864 particles, allowing one to study the influence of 
the system size on the DOS. Starting from an FCC structure, which is then melted, we finally 
arrive at a liquid structure (which has been checked by studying the PDF). The simulation 
runs have been extended over 3 x 105-5 x IO5 particle moves (HS case) and over lo4 time 
steps At ( A t  was assumed to be 5 x s) in the U case. The PDF, which may be used 
as input in the integral-equation approach, was evaluated aher every 50-2CO configurations 
(HS) or after every tenth At (U) and turned out to be sufficiently smooth to be used in the 
above expressions. 

Problems were encountered for dilute HS systems (p' = pd3 6 0.1 and d being the 
HS diameter) in MD simulations: using the minimum-image convention unphysical overlaps 
were observed, resulting in a PDF which is non-zero inside the core. However, it turned out 
that this unphysical behaviour does not affect the results of the Dos: separate calculations 
with an HS Monte Carlo code and an MD simulation with an extended image convention 
(i.e. the dynamics of the HS system are determined by taking into account the collisions of 
all particles within a box nine times the original box size) yield results within numerical 
accuracy. 

As has been already pointed out by Hafner and co-workers [29] and recently by Ganguly 
and Stratt 1301, the finite size of the Brillouin zone and hence the energy dispersion 
necessitate the calculation of the Dos at more k points than just the r point, especially 
for higher densities pa 0.5. 

k t  Vjk(k) be the discrete Fourier transform of the matrixelement V(r,k) = V ( [ q - ~ k \ ) ,  
rj and rk being the positions of two arbitrary sites of a given configuration, 

The summation in (16) ranges over all-in principle infinite-lattice vectors a of the cubic 
lattice with the prime restricting the summation to cases with a # 0 for j = k. As we are 
usually dealing with exponentially damped matrix elements (cf. (18>(20) below) we take 
into account only the 26 = 33 - 1 supercells directly adjacent to the central cell, the cells 
farther away giving only negligeable contributions to the sum in (16). but increasing the 
computation time considerably. 
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The DOS is then determined by a direct diagonalization of the resulting matrix 
Vjk(k), j ,  k = 1, .  . . , N ,  N being the number of particles in the simulation. We have 
used the following eight R: points ( L  is the length of the simulation supercell): 

and 

keeping only one k point for each equivalent pair I C ,  -k. 
The simulation results are given for a system with N = 500 particles and are averaged 

over 75-100 statistically independent configurations. The averaging has been performed 
by the usual histogram-binning technique with a bin size of AE = 0.01V0. Note that-on 
contrast to the results of Bush et QI [ IO]-no subsequent fitting procedure has been applied 
to the simulation data prior to plotting. 

2.3. The systems 

23.1 .  Interatomic forces and pair correlation functions. Concerning the atomic structure 
we have considered two systems: HS and w systems. The interaction is assumed to be 
pairwise additive ( @ N ( r l l  ... T-M) = Cizj @(rij)) .  The systems are characterized in the HS 

case by the packing fraction r~ ( q  = $pd3 = $p*,  d being the HS diameter) and for the U 
case by the energy-parameter t and the length scale U ,  so that the potential reads 

The respective PDFs, which are required as input quantity for the integral-equation approach 
are determined as follows: 

(i) HS case: (a) semianalytic parametrization of the analytical solution of the PY equation 
1221, which allows an accurate determination of g ( r )  up to 20 HS diameters [23]; however, 
as we know that this parametrization differs especially for higher densities, from simulation 
results, in particular near the contact we also used (b) the semi-empirical parametrization 
of computer-simulation results due to Verlet and Weis (vw) [25] of the PDF of an HS system: 
and (c) the PDF as obtained directly from the simulation, restricted, however, to the range 
[O, LDl, i.e. the function is known only up to half the box length ( L  = m). The 
influence of the different PDFs will be discussed in section 3. 

(ii) LJ case: (a) the PDF was obtained by one of the thermodynamically self-consistent 
liquid-state integral-equation approaches (HMSA [19], MHNC [31]) which are known to give- 
within numerical accuracy-results equivalent to simulation data [32,33]; @) we also obtain 
directly from the simulation the PDF (again restricted to the range [0, L/2]), which turns 
out to be in good agreement with the PDF as obtained from (a). 
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2.3.2. The transfer maaix elemenrs. For the TMEs we used-as in our previous study 
[ lll-the following three expressions: 

C F Strnadl and G Kohl 

where Vy, is a Yukawa WE, V,, is a TME taken to be proportional to overlaps of 
hydrogen Is wave-functions, and V,, is the Is matrix element (assuming hydrogen Is eigen- 
functions). During all calculations-both integral equation and simulation-we use reduced 
(dimensionless) units thmughout. The length is scaled with the intrinsic scale of the system, 
x = r/d for the HS systems, and x = r / a  (cf. (17) )  for the U system. The matrix elements 
and the energy are given in reduced units as V'(x)  = V ( x ) / V ; ,  V; = Vo/d (V;= Vo/u) 
for a Yukawa transfer matrix element Vy, for an HS (U) system and V; VO otherwise, 
and z = E /  V;, respectively. This leads to a reduced DOS (per particle per reduced energy) 
of D'(2) = V$D(E). 

3. Results 

3.1. Overview of previous results of the integral-equation approach 
In this paragraph we want to briefly present the results already given elsewhere [181. 
Concerning the influence of g ( r )  we have found [18]  that for hard-core systems the contact 
value g(d)  is the most crucial parameter. Figure l(a) represents the WS for a fixed TME, 
VI,, with a = 2, for two different densities p" = 0.1 and p* = 0.5, where we compare a 
step-function PDF with a realistic PY g ( r ) .  The UBE is clearly seen to move upwards-into 
the right position, as will be discussed below in section 3.2. To further demonstrate the 
claim that the electronic states near the UBE are mainly determined by the contact value of 
the PDF we have calculated the DOS in figure I(b) for two different PDFs (an HS System in the 
PY approximation and an HS Yukawa (HSY) system in the mean-spherical approximation, the 
latter also admitting analytical solution) with the same contact value g(d) but fundamentally 
different long-range 'behaviour. The PY g ( r )  has been computed at a packing fraction of 
q = 0.27 I2 whereas the HSY parameters are given by K = I ,  q = 0.052 36 and z = 1.5 (see, 
eg., [24] for a recent semi-analytic approach): the resulting DOSS differ only marginally. 
Hence the model system previously proposed by WL, assuming a step-function for the PDF 
so that g(d)  = 1, must give substantially different results from a realistic PDF. The physical 
origin for the dependence of the UBE on the short-range order may be related to an effective 
(energy and density dependent) screening of the TME [34]. 

The influence of the TME is more complex. For simplicity we have used only one 
PDF (a step function, allowing a direct comparison with the analytical WL results for a 
Yukawa TME) and have calculated the DOS for the three different TMEs (18 j(2.0) (i.e., we 
varied both shape and range via a) and different densities. When going from figure 2(a) 
to figure 2(b) and, thus, reducing the range of the TME, the UBE is progressively shifted to 
lower energies and we obtain a substantially narrower band, a behaviour well known in any 
TB approach. Moreover, from figure 2(b) it can be clearly seen that the low-density limit 
(this is also equivalent to a very-sholt-ranged interaction, i.e. large a) of the Em reduces to 
a Hubbard semi-elliptical DOS centred around z = 0. Increasing the density when switching 
from figure 2(b) to figure 2(c) the UBE is shifted upwards, while the height of the DOS is 
affected only marginally. 
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7 I , . , . . , 

Figure 1. (a) The reduced ws, D * ( I ) ,  for a Is TME VI,  with (2 = 2 for two different mm: 
- , w g ( r ) ;  --.-, step function p* = 0.1 (curves A) and p' = 0.5 (curves B). (b) The 
reduced DOS, D'(z ) ,  for a VI, TME with a = 2 for two FUFS with different long-range behaviour 
(cf. inset). -, Hs-Yukawa g(r) ,  ----. PY g ( r ) .  p* = 0.1 (curves A) and p' = 0.5 (curves 
B). 

Figure 2. (a) The reduced ws. D * ( d ,  for three different 
IMU for e = 1 at density p' = 0.1: -, V m ;  --.-, 
VI,; - . -. Vov. (b) The reduced DOS, D'(z), for three 
different TMES for D = 2 at density p' = 0.1: -, VW,; 
..._ , VI,: - . -, Vov. (c) The reduced DOS, D'(r). for 
three different TMES for Q = 2 at density p' = 0.5 -, 
vu,: - - - -  , VI'; - ' -. v,. 

3.2. Hard-core system 

In our study of HS-systems we have limited ourselves to three particular TMES (cf. (18)- 
(20)), for which the Dos has been determined at various densities p* to enable a fairly 
complete comparison with 'exact' simulation results. We have chosen a Vm(x) TME with 
(Y = 1 (figure 4(at4(c)), a VI&) TME with (Y = 2 (figure 5(a)-S(c)) and a V&) TME with 
(Y = 2 (figure 6(a) and 6(b)), with the densities ranging from p' = 0.1 to p' = 0.8. The 
PDFs for these systems are displayed in figure 3. 

Figures 4-6 are m g e d  in the following systematic way: when going from (a) to (c) 
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4. 

3. - ..., x 

2. 

I .  

1 .  2. 3. 4. 

X 

F g v e  3. The PY pair disPibution functions fw an ns syslem a1 three different densities.: -, 
p' = 0.8; . . . -, p' = 0.5; - . -, p' = 0.1. The g ( r )  for p' = 0.8 is a vw parametrization 

z 

Figurt 4 (a) "e reduced m, D*[z), for a Yukawa 
m ~ .  Vy,, wilh (I = I a1 density p* = 0.1: -, 
simulation; .-.-, integraleguaoon approach with a PY 
g ( r ) .  (b) As (a). but at density p' = 0.5. (c) The 
reduced DOS. D * ( z ) ,  for a Yukawamh V N ~ .  with U = 1 
at the density p' = 0 . 8  -, simulation; .- -, integral. 
equation approach wilh a w g(r); -. -, integral- 
equation approach with a vw mrrecled g(r) .  

(e.g., from 4(a) to 4(c)), the density is increased gradually while keeping the TME fixed. 
Switching from one subfigure of 4 to the corresponding subfigures of 5 and 6 (e.g., from 
4@) to 5(b) and 6@)) the range of the TME is increased at the same fixed density p'. Each 
particular Dos calculated by the integral-equation approach using the closure relation of (I 1) 
is displayed along with the 'exact' DOS as obtained from an HS MD computer simulation, 
thus enabling a thorough study of the reliability of the S S C A ~ M A  closure. 

In summarizing the outcome of such a comparison we have to distinguish a low-density 
behaviour and a high-density behaviour of the sSCAJEMA. At p* = 0.1 we note that, although 
the lower band tail is reproduced very well, the upper band and its edge are not determined 
correctly by !he theory. This may well be explained by the fact that the electronic states 
at the upper band edge are mainly determined by local (painvise) interactions, as has been 
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3 ' ~ ~ ~  2. ~ 3 ' ~ ~  2. :i(b) 
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Figure 6. (a) The reduced ws, D*(z).  for an overlap WE. V,, with U = 2 at density p* = 0.1: -. simulation: - - -  -, integralequation approach with a w g(r) .  (b) As (a), but at density 
0% = 0.5. 

already put forward in section 3.1. At lower densities p' < 0.1 one would also have 
to include multi-hopping processes in the expansion of C ( T ~  - T Z )  to correctly count the 
contributions of a pair of sites. Those effects are obviously completely ignored in the 
single-site closure of (1  I). 

0.5) are much more favourable. 
Now, both lower and upper tails of the single energy band are reproduced in very good 
agreement with the simulation data. The UBE and the position of the maximum in the DOS 
are predicted correctly as are the form and steepness of the flank of the UBE. One notes that 
this agreement is slightly better for long-ranged TMEs (cf. figures J(b), 5(b) and 6@)) than 
for a Yukawa TME indicating that we still see some multi-hopping influence, as has been 

The SSCA/EMA results in the high-density regime (p* 
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argued in the preceding paragraph. 
At these densities, unfortunately, we have to face another deviation of the theory 

compared to the exact results. Although the position of the maximum in the DOS coincides 
almost exactly with the simulation, the height as determined from the integral-equation 
approach is overestimated by a noticeable amount. We will argue that this feature of the 
SSCA~EMA is due to the selective summation process prescribed by the closure of (1  I), where 
even at the single-site level an infinite number of interaction graphs has to be neglected to 
arrive at an analytical closure relation. This restriction to a certain subclass of all single-site 
diagrams overestimates, as we will show in a moment, the contributions of the long-range 
interactions of the electrons in the liquid. In figure 7 we have depicted the DOS for an HS 
system at p* = 0.1 and p' = 0.5 for a Vya(x) TME with a = 1 along with a Is matrix 
element V&) with a = 2.145. The range of Vi&), (I = 2.145, has been chosen to 
minimize the differences to the former Vyu,(x; a = 1) in the range 1 6 x 6 2, i.e., it has 
been determined by minimizing the following function of a: 

J I  

The TMES determined in this manner will possess a similar short-range behaviour while 
VI&) is much more far-ranged than the corresponding VY&). As can be clearly seen 
from figure 7, at low densities the differences between the two ma!iix elements are minor, 
while at p* = 0.5 a significant increase of the peak height of the DOS for the long-ranged 
VI&) is to be observed, other deviations being only of marginal influence. This clearly 
indicates that in the summation prccess inherent to the closure (1 I )  long-range interactions 
determine the peak height of the DOS. Switching back to the previous figures 4(c), 5(b) 
and 5(c), where the same behaviour has been noticed, this would imply that the sSCA/EMA 
overestimates the contributions stemming from the long-range interactions of the excitations 
in the liquid system. This fact may be reminiscent of a well known point in simple liquid 
state theory where different summation prescriptions (viz., closure relations, e.g., HNC 
or PY [5]) have to be used for long- or short-ranged pair potentials to obtain results in 
good agreement with exact data. The analogies to the theory of simple liquids may-in 
our opinion-be stretched even further as we propose to employ some form of 'mixing' 
between two closures, e.g., (11) and (12). to overcome these difficulties. Of course, a 
measure for self-consistency would have to be supplied, too, where we would suggest using 
the moments (E") of the DOS. 

3.3. Continuous potentiaIs 

When computing the DOS via the integral-equation approach for realistic systems 
described by continuous interatomic pair potentials we have deliberately chosen the 
parameters to resemble a well known system: E l k a  = 119.80K. U = 3.405A (cf. (17)) 
with the mass of the particles fixed at m = 6.633 x lo-% kg, which incidentally conforms 
to liquid Ar. Obviously, any TB approach is not feasible to calculate electronic properties 
of a real Ar liquid, but we are interested only in the properties of the w system itself, not 
its relation to any real liquid. The DOS has been calculated for two different m s ,  Vy& 
and Vis, at two points on the liquidus line, at T = 90 K with the number density n = 
0.021 41 A-3 and T = 150 K, n = 0.01011 In order to roughly compare these two 
systems to an HS system-being fully described by a reduced density p* only-we obtain 
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Figure 8, The PDF for the two different states of the U 
system: -, T = 90 K; - . -, T = 150 K. For the 
other panmeters characterizing the system cf. text 

p* = 0.91 and p* = 0.41 respectively; here we have used Barker and Henderson's [36] 
definition of an equivalent HS diameter d 

.,in 

d = 1 d3r [ l  - exp[-pO(r)]], 

For a more detailed description we have depicted the two PDFS in figure 8. 
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Figure 9. The reduced DOS, D'(z), for an U system at 
T = 150 K for a Yukawa m, Vw w i t h e =  1 (curves 
A) and a 1s m,  VI^, with U = 1.5 (curves B): -, 
simulation; -. . -, integmiequation approach. 

Figure 10. As figme 9. but at temperahm T = 90 K. 

The resulting DOS computed via the solution of the coupled integral equations as 
compared to 'exact' simulation results are given in figure 9 for the low-density state at 
T = 150 K and in figure 10 for the high-density system at T = 90 K. We find the agreement 
to be reasonably good; especially at T = 150 K the band-edge behaviour of both upper 
and lower band-edges is reproduced in an excellent way. One notes that this fact does 
not depend on the TME used. As has already been pointed out in section 3.2 one expects 
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Table I .  The moments ( E " ) ,  n = 0, I. and 2 of the reduced ws for the US syslms Of u\B 
study. h e  first cdlumn. TME. denotes lhe type of uansfer-manix element used: 'Is' for a VI,. 
'ov' lor a V,, and 'Yuk' f a  a V Y ~  WE. 

 ME p' (I (EO) x104 integralequation (15) 

IS 0.1 2.0 1.wO6 2.54 0.1638 0.1639 
IS 0.5 2.0 1.0001 1.96 0.9711 0.9717 
ov 0.5 2.0 1.0014 12.38 2.7681 2.7880 
Yuk 0.1 0.5 1.W5 14.98 0.5233 0.5292 
Yuk 0.1 1.0 l.OW7 3.21 0.1096 0,1098 
Yuk 0.5 1.0 1.0014 - 1.05 0.6674 0.6717 
Yuks 0.8 1.0 1.0003 1.62 1.6906 1.6945 
Yukb 0.8 1.0 0.9989 - 7.43 1.2316 1.2741 

( E ' )  ( E 2 )  (EZ) 

Py-g(r). 
vw c o m t e d  PY-g(r). 

the EMA to overestimate the maximum of the DOS due to a highly selective SL"ati0n of 
graphs prescribed through the closure (1 I). This effect can be clearly seen in both figures 
regardless of the TME or the density. 

3.4. Moments 
Results for the moments are compiled in table 1 for HS systems and in table 2 for LJ 
systems. The moments provide a convenient tool for measuring the accuracy and stability 
of the numerical implementation. We find that the exact values for (E') = 1 and ( E l )  = 
0 are reproduced for all systems within numerical accuracy. The moment ( E 2 )  has been 
calculated via two routes. either by direct integration of the DOS (13) or by using (15). 
In general, agreement of both results is better than 995, only for two cases have larger 
differences been encountered. This may be attributed to the increased numerical accuracy 
required for the calculation especially at the far end of the lower band tail. There for some 
systems the band extends downwards until z Y - 12 and we obviously have a quadratic 
influence on z (cf. (15)) which multiplies any numerical instability. 

Table 2. The momenu (E") .  n = 0, 1. and 2 of the reduced ws for the U sysiems of this study. 
The first column, TME. indicates the rype of transfer-malrix elemenl used, cf. table I. 

Temperature ( E ' )  ( E 2 )  (@I 
TME 00 (I (Eo)  xlO" integral equation (15) 

Yuk 150 1.0 1.0013 7.37 0.4812 0.4808 
Is 150 1,5 1.0016 28.30 2.2103 2.2084 

WL have assumed (but not proven rigorously) that any Dos calculated via an 02-type 
equation is automatically normalized (i.e., (E') = I), but see also 1351, where a different 
argument based on the relation between the nth moment and the nth term in the locator 
expansion is put forward. This seems to be confirmed from our data. However, we found 
from preliminary calculations 1371 using a different closure relation. which is a generalization 
of a theory due to Elyutin [13], 

g ~ ( p ) c ( ~ )  = g ~ v ) v ( r ) / ( l -  [E(z)v(7,l2j (22) 

cases with ( E o )  # 1 
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4. Conclusion 

In this contribution we have shown the results of anumerical implementation of an algorithm 
for the determination of the electronic density of states of topologically disordered systems. 
The theory, originally formulated by Winn and Logan [1,2], is based on the solution of 
two coupled integral equations with the pair distribution function g ( r )  characterizing the 
structure of the liquid medium and the transfer-matrix element V ( r )  enabling the electronic 
transfer between different sites. In order to solve these equations an additional equation, 
the so-called closure relation, has to be supplied. We have taken one particular single-site 
closure ( S S C ~ E M A ) ,  which effectively renders the theory equivalent to the effective medium 
approximation of Roth [7]. 

While previous contributions incorporating the S S C ~ E M A  approach have only considered 
analytically solvable model systems (step-function g(r ) ,  Yukawa-type transfer-matrix 
element V ( r ) )  [2,3,1 I] ,  our numerical implementation allows the full solution of the 
SSWEMA integral equations for arbitrary g ( r )  and V ( r ) .  The influence of the various 
parameters has been investigated and a broad comparison of the theory with 'exact' computer 
simulation data has been carried out for both hard-sphere and Lennard-Jones systems. 

We are able to show that the electronic states in the vicinity of the upper band edge 
are mainly determined by the contact value of g ( r ) ,  i.e., physically speaking, by nearest- 
neighbour interactions. This may be understood in terms of an (energy- and density- 
dependent) screening of the transfer-matix element [34]. Long-range variations in g(r )  
do not have any significant influence on the density of states. The correct prediction of 
the upper band edge may become important when the SSCA~EMA is applied to physical 
problems where the full band-width of the density of states is needed, (e.g., determining 
optical absorption phenomena). 

When the theoretical results obtained by solving the S S C A ~ M A  equations numerically 
are compared with exact molecular dynamics data-the density of states then computed by a 
direct diagonalization of the Hamiltonian and averaging over uncorrelated configurations- 
we can summarize our findings as follows. 

Due to the neglection of multi-hopping processes in the S S C A ~ M A  closure we observe 
only weak agreement at low densities (p' < 0.1). Only the lower band tail agrees well with 
the simulation, the upper tail deviating noticeably and the upper band edge falling short of 
the exact value. 

At higher densities @" 2 0.5) the theory reproduces the computer simulation quite well, 
especially at both the band tails. While the position of the upper band edge now almost 
coincides with the exact position (as does the position of the maximum of the density 
of states), the peak height of the maximum is overestimated substantially by the theory. 
This may be attributed-as we show-to the highly selective summation of the diagrams 
induced by the single-site S S C ~ E M A  closure, which always tends to overestimate the long- 
range contributions to the density of states. This behaviour is observed for both hard-sphere 
and Lennard-Jones systems. This would mean that when one applies this integral-equation 
approach to problems where the (precise) Fermi energy is required it could become necessary 
to go beyond the S S C A ~ M A  single-site approximation. 

Finally, the high numerical reliability and accuracy of this implementation has been 
checked via the calculation of the moments of the density of states, where exact results an 
known for (EO),  ( E l )  up to the second moment ( E z ) .  
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Appendix 

The numerical solution of the coupled integral equations (7), (8) and (11) has been 
implemented with an appropriate generalization of Gillan's [ 171 algorithm, well known in the 
theory of simple liquids, based on a realization of Pastore and Senatore [27]. These equations 
are solved as described below for a fixed z ,  increasing z by Az which was assumed to be at 
least 0.01. The upper and lower band edges were found by the two criteria D*(z) < 0.001 
and lD*(r & Az) /D*(z ) l  < 0.01. As usual one does not solve these equations for the long- 
ranged C(x) or H ( x )  (cf. (8) and using reduced units x = r / d ) ,  but for a complex-valued 
y ( x )  = H ( x ) - C ( x )  with a discrete representation y ( x j )  = y ( i A x ) ,  i = 0. . . . , M, M being 
the size of the mesh and Ax its spacing. We have found Ax = 0.05 and M = 1025 data 
points to give reasonable accuracy while guaranteeing both stable and quick convergence. 
The number of triangular 'basis-functions' (approximating the 'rough' part of y ( x ) ;  for 
convenience we follow the notation of [17]) which is necessary for convergence has been 
found to depend on the density of the system and the range of the TME. For low-density 
systems (p' < 0.25) 12-20 basis functions are well suited, ~ ~~ ~ whereas in the high-density 
regime @' > 0.5) w e  had to use 20-30 of these functions. It usually suffices to extend 
these basis functions over 6-8 mesh points. Although one does not normally introduce a 
mixing parameter for the Picard cycle in Gillan's algorithm, 

~ ~~ ~~ 

yne"(x) = P(y"'d(x)) (AI) 

(with P ( y )  denoting the mult of applying one Picard iteration to y )  it turned out to be 
convenient in terms of the convergence rate to do so, especially for higher densities p* 2 0.5 
and-interestingly-for energy values at the lower band tail: 

y""(x) = ( I  - (Y)y"ld(x) +(YP(y"'d(x)). ( A 3  

The iteration for self-consistency is stopped when the convergence criterium 

is fulfilled, t = IO-* being the value employed in our calculations. When using the 
SSCA/EMA closure (1 1) and assuming a mixing parameter (Y = 0.1 convergence was obtained 
after 1-2 Newton-Raphson cycles, with 1-3 Picard cycles each. Preliminary calculations 
with a different, multi-hopping closure (22). however, necessitated values of (Y = 0.01 to 
yield satisfactory convergence behaviour. 
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From the construction of the Gillan algorithm-it uses Newton's method for minimizing 
a vector valued complex function-it is evident that one faces an additional difficulty when 
dealing with HS systems, which possess an intrinsic discontinuity at contact, g(l-) # g(l+). 
As the PDF g ( x )  directly enters our calculations via the closure (1 1) we have to introduce 
some form of smoothing at x = 1. Of course. without that unphysical smearing, convergence 
of the algorithm would be utterly impossible. We have chosen an appropriately scaled 
and shifted tanh(Kx) function, where the slope K has been determined by requiring good 
agreement with the known analytical DOS for a Vyuk TME while still guaranteeing self- 
consistency and convergence of the procedure. 
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